Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473862

RESUMEN

Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.


Asunto(s)
Ataxia Cerebelosa , Células Madre Pluripotentes , Paraplejía Espástica Hereditaria , Animales , Humanos , Paraplejía Espástica Hereditaria/genética , Neuronas , Axones , Mutación
2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982531

RESUMEN

Milk oligosaccharides are a complex class of carbohydrates that act as bioactive factors in numerous defensive and physiological functions, including brain development. Early nutrition can modulate nervous system development and can lead to epigenetic imprinting. We attempted to increase the sialylated oligosaccharide content of zebrafish yolk reserves, with the aim of evaluating any short-term effects of the treatment on mortality, locomotor behavior, and gene expression. Wild-type embryos were microinjected with saline solution or solutions containing sialylated milk oligosaccharides extracted from human and bovine milk. The results suggest that burst activity and larval survival rates were unaffected by the treatments. Locomotion parameters were found to be similar during the light phase between control and treated larvae; in the dark, however, milk oligosaccharide-treated larvae showed increased test plate exploration. Thigmotaxis results did not reveal significant differences in either the light or the dark conditions. The RNA-seq analysis indicated that both treatments exert an antioxidant effect in developing fish. Moreover, sialylated human milk oligosaccharides seemed to increase the expression of genes related to cell cycle control and chromosomal replication, while bovine-derived oligosaccharides caused an increase in the expression of genes involved in synaptogenesis and neuronal signaling. These data shed some light on this poorly explored research field, showing that both human and bovine oligosaccharides support brain proliferation and maturation.


Asunto(s)
Leche , Pez Cebra , Humanos , Animales , Leche/química , Pez Cebra/genética , Pez Cebra/metabolismo , Larva/metabolismo , Microinyecciones , Leche Humana/química , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Expresión Génica
3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834939

RESUMEN

Mutations in the receptor expression-enhancing protein 1 gene (REEP1) are associated with hereditary spastic paraplegia type 31 (SPG31), a neurological disorder characterized by length-dependent degeneration of upper motor neuron axons. Mitochondrial dysfunctions have been observed in patients harboring pathogenic variants in REEP1, suggesting a key role of bioenergetics in disease-related manifestations. Nevertheless, the regulation of mitochondrial function in SPG31 remains unclear. To elucidate the pathophysiology underlying REEP1 deficiency, we analyzed in vitro the impact of two different mutations on mitochondrial metabolism. Together with mitochondrial morphology abnormalities, loss-of-REEP1 expression highlighted a reduced ATP production with increased susceptibility to oxidative stress. Furthermore, to translate these findings from in vitro to preclinical models, we knocked down REEP1 in zebrafish. Zebrafish larvae showed a significant defect in motor axon outgrowth leading to motor impairment, mitochondrial dysfunction, and reactive oxygen species accumulation. Protective antioxidant agents such as resveratrol rescued free radical overproduction and ameliorated the SPG31 phenotype both in vitro and in vivo. Together, our findings offer new opportunities to counteract neurodegeneration in SPG31.


Asunto(s)
Proteínas de Transporte de Membrana , Estrés Oxidativo , Paraplejía Espástica Hereditaria , Animales , Axones/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Estrés Oxidativo/genética , Paraplejía Espástica Hereditaria/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
4.
Biomedicines ; 10(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36009367

RESUMEN

For centuries, the cannabis plant has been used as a source of food, fiber, and medicine. Recently, scientific interest in cannabis has increased considerably, as its bioactive compounds have shown promising potential in the treatment of numerous musculoskeletal and neurological diseases in humans. However, the mechanisms that underlie its possible effects on neurodevelopment and nervous-system functioning remain poorly understood and need to be further investigated. Although the bulk of research on cannabis and cannabinoids is based on in vitro or rodent models, the zebrafish has now emerged as a powerful in vivo model for drug-screening studies and translational research. We here review the available literature on the use of cannabis/cannabinoids in zebrafish, and particularly in zebrafish models of neurological disorders. A critical analysis suggests that zebrafish could serve as an experimental tool for testing the bioactivity of cannabinoids, and they could thus provide important insights into the safety and efficacy of different cannabis-extract-based products. The review showed that zebrafish exhibit similar behaviors to rodents following cannabinoid exposure. The authors stress the importance of analyzing the full spectrum of naturally occurring cannabinoids, rather than just the main ones, THC and CBD, and they offer some pointers on performing behavioral analysis in zebrafish.

5.
Animals (Basel) ; 11(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34827831

RESUMEN

Genetic variations in the oxytocinergic system, known to regulate social behavior throughout the evolution of mammals, are believed to account for differences in mammalian social behavior. Particularly, polymorphic variants of the oxytocin receptor (OXTR) gene have been associated with behavioral variations in both humans and dogs. In this study, we offered evidence of the correlation between levels of salivary oxytocin (sOXT), maternal behavior and a single-nucleotide gene variant in OXTR (rs8679684) in nineteen lactating Labrador Retriever dogs. Carriers of at least one copy of the minor A allele showed higher levels of sOXT and maternal care in comparison with the homozygous T allele carriers. Considering the relevance of mother care in newborn development, these findings could help us to better understand the possible impact of variants in the OXTR gene in selecting dams.

6.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445111

RESUMEN

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a multisystem hereditary ataxia associated with mutations in SACS, which encodes sacsin, a protein of still only partially understood function. Although mouse models of ARSACS mimic largely the disease progression seen in humans, their use in the validation of effective therapies has not yet been proposed. Recently, the teleost Danio rerio has attracted increasing attention as a vertebrate model that allows rapid and economical screening, of candidate molecules, and thus combines the advantages of whole-organism phenotypic assays and in vitro high-throughput screening assays. Through CRISPR/Cas9-based mutagenesis, we generated and characterized a zebrafish sacs-null mutant line that replicates the main features of ARSACS. The sacs-null fish showed motor impairment, hindbrain atrophy, mitochondrial dysfunction, and reactive oxygen species accumulation. As proof of principle for using these mutant fish in high-throughput screening studies, we showed that both acetyl-DL-leucine and tauroursodeoxycholic acid improved locomotor and biochemical phenotypes in sacs-/- larvae treated with these neuroprotective agents, by mediating significant rescue of the molecular functions altered by sacsin loss. Taken together, the evidence here reported shows the zebrafish to be a valuable model organism for the identification of novel molecular mechanisms and for efficient and rapid in vivo optimization and screening of potential therapeutic compounds. These findings may pave the way for new interventions targeting the earliest phases of Purkinje cell degeneration in ARSACS.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Fármacos Neuroprotectores/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Ataxia/metabolismo , Ataxia Cerebelosa/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Espasticidad Muscular/metabolismo , Mutación/genética , Fenotipo , Células de Purkinje/metabolismo , Ataxias Espinocerebelosas/congénito , Ataxias Espinocerebelosas/metabolismo
7.
Nutrients ; 13(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065946

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular childhood disorder that causes progressive muscle weakness and degeneration. A lack of dystrophin in DMD leads to inflammatory response, autophagic dysregulation, and oxidative stress in skeletal muscle fibers that play a key role in the progression of the pathology. ß-glucans can modulate immune function by modifying the phagocytic activity of immunocompetent cells, notably macrophages. Mitochondrial function is also involved in an important mechanism of the innate and adaptive immune responses, owing to high need for energy of immune cells. In the present study, the effects of 1,3-1,6 ß-glucans on five-day-old non-dystrophic and dystrophic (sapje) zebrafish larvae were investigated. The effects of the sonication of ß-glucans and the dechorionation of embryos were also evaluated. The results showed that the incidence of dystrophic phenotypes was reduced when dystrophic embryos were exposed to 2 and 4 mg L-1 of 1,3-1,6 ß-glucans. Moreover, when the dystrophic larvae underwent 8 mg L-1 treatment, an improvement of the locomotor performances and mitochondrial respiration were observed. In conclusion, the observed results demonstrated that 1,3-1,6 ß-glucans improve locomotor performances and mitochondrial function in dystrophic zebrafish. Therefore, for ameliorating their life quality, 1,3-1,6 ß-glucans look like a promising diet supplement for DMD patients, even though further investigations are required.


Asunto(s)
Suplementos Dietéticos , Locomoción/efectos de los fármacos , Mitocondrias Musculares/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , beta-Glucanos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Larva , Mitocondrias Musculares/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Pez Cebra
8.
J Neurol ; 268(9): 3381-3389, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33704555

RESUMEN

COQ4 is a component of an enzyme complex involved in the biosynthesis of coenzyme Q10 (CoQ10), a molecule with primary importance in cell metabolism. Mutations in the COQ4 gene are responsible for mitochondrial diseases showing heterogeneous age at onset, clinical presentations and association with CoQ10 deficiency. We herein expand the phenotypic and genetic spectrum of COQ4-related diseases, by reporting two patients harboring bi-allelic variants but not showing CoQ10 deficiency. One patient was found to harbor compound heterozygous mutations (specifically, c.577C>T/p.Pro193Ser and the previously reported c.718C>T/p.Arg240Cys) associated with progressive spasticity, while the other harbored two novel missense (c.284G>A/p.Gly95Asp and c.305G>A/p.Arg102His) associated with a neurodevelopmental disorder. Both patients presented motor impairment and ataxia. To further understand the role of COQ4, we performed functional studies in patient-derived fibroblasts, yeast and "crispant" zebrafish larvae. Micro-oxygraphy showed impaired oxygen consumption rates in one patient, while yeast complementation assays showed that all the mutations were presumably disease related. Moreover, characterization of the coq4 F0 CRISPR zebrafish line showed motor defects and cell reduction in a specific area of the hindbrain, a region reminiscent of the human cerebellum. Our expanded phenotype associated with COQ4 mutations allowed us to investigate, for the first time, the role of COQ4 in brain development in vivo.


Asunto(s)
Enfermedades Mitocondriales , Proteínas Mitocondriales/genética , Trastornos del Neurodesarrollo , Animales , Ataxia/genética , Fibroblastos , Humanos , Enfermedades Mitocondriales/genética , Debilidad Muscular/genética , Músculos , Trastornos del Neurodesarrollo/genética , Ubiquinona , Pez Cebra
9.
Front Cell Dev Biol ; 8: 549533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072742

RESUMEN

Mex3A is an RNA binding protein that can also act as an E3 ubiquitin ligase to control gene expression at the post-transcriptional level. In intestinal adult stem cells, MEX3A is required for cell self-renewal and when overexpressed, MEX3A can contribute to support the proliferation of different cancer cell types. In a completely different context, we found mex3A among the genes expressed in neurogenic niches of the embryonic and adult fish brain and, notably, its expression was downregulated during brain aging. The role of mex3A during embryonic and adult neurogenesis in tetrapods is still unknown. Here, we showed that mex3A is expressed in the proliferative region of the developing brain in both Xenopus and mouse embryos. Using gain and loss of gene function approaches, we showed that, in Xenopus embryos, mex3A is required for neuroblast proliferation and its depletion reduced the neuroblast pool, leading to microcephaly. The tissue-specific overexpression of mex3A in the developing neural plate enhanced the expression of sox2 and msi-1 keeping neuroblasts into a proliferative state. It is now clear that the stemness property of mex3A, already demonstrated in adult intestinal stem cells and cancer cells, is a key feature of mex3a also in developing brain, opening new lines of investigation to better understand its role during brain aging and brain cancer development.

10.
Ann Clin Transl Neurol ; 7(4): 584-589, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32216065

RESUMEN

Autosomal recessive spastic paraplegia 52 is caused by biallelic mutations in AP4S1 which encodes a subunit of the adaptor protein complex 4 (AP-4). Using next-generation sequencing, we identified three novel unrelated SPG52 patients from a cohort of patients with cerebral palsy. The discovered variants in AP4S1 lead to reduced AP-4 complex formation in patient-derived fibroblasts. To further understand the role of AP4S1 in neuronal development and homeostasis, we engineered the first zebrafish model of AP-4 deficiency using morpholino-mediated knockdown of ap4s1. In this model, we discovered several phenotypes mimicking SPG52, including altered CNS development, locomotor deficits, and abnormal neuronal excitability.


Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/fisiopatología , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/fisiopatología , Complejo 4 de Proteína Adaptadora/deficiencia , Adolescente , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Parálisis Cerebral/genética , Preescolar , Estudios de Cohortes , Modelos Animales de Enfermedad , Epilepsia/genética , Epilepsia/fisiopatología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Pez Cebra
11.
Front Vet Sci ; 7: 590057, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33553276

RESUMEN

The use of animal models in biology research continues to be necessary for the development of new technologies and medicines, and therefore crucial for enhancing human and animal health. In this context, the need to ensure the compliance of research with the principles Replacement, Reduction and Refinement (the 3 Rs), which underpin the ethical and human approach to husbandry and experimental design, has become a central issue. The zebrafish (Danio rerio) is becoming a widely used model in the field of behavioral neuroscience. In particular, studying zebrafish social preference, by observing how an individual fish interacts with conspecifics, may offer insights into several neuropsychiatric and neurodevelopmental disorders. The main aim of this review is to summarize principal factors affecting zebrafish behavior during social preference tests. We identified three categories of social research using zebrafish: studies carried out in untreated wild-type zebrafish, in pharmacologically treated wild-type zebrafish, and in genetically engineered fish. We suggest guidelines for standardizing social preference testing in the zebrafish model. The main advances gleaned from zebrafish social behavior testing are discussed, together with the relevance of this method to scientific research, including the study of behavioral disorders in humans. The authors stress the importance of adopting an ethical approach that considers the welfare of animals involved in experimental procedures. Ensuring a high standard of animal welfare is not only good for the animals, but also enhances the quality of our science.

12.
Dev Dyn ; 248(7): 603-612, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31070827

RESUMEN

BACKGROUND: The platelet-derived growth factor (PDGF) family consists of four ligands (PDGF-A, PDGF-B, PDGF-C, PDGF-D) and two tyrosine kinase receptors (PDGFR-α and PDGFR-ß). In vertebrates, PDGF signaling influences cell proliferation, migration, and matrix deposition, and its up-regulation is implicated in cancer progression. Despite this evidence, the role of each family member during embryogenesis is still incomplete and partially controversial. In particular, study of the role of pdgf signaling during craniofacial development has been focused on pdgf-a, while the role of pdgf-b is almost unknown due to the lethal phenotypes of pdgf-b-null mice. RESULTS: By using a pdgf-b splice-blocking morpholino approach, we highlighted impairment of neural crest cell (NCC) migration in Xenopus laevis morphants, leading to alteration of NCC derivatives formation, such as cranial nerves and cartilages. We also uncovered a possible link between pdgf-b and the expression of cadherin superfamily members cdh6 and cdh11, which mediate cell-cell adhesion promoting NCC migration. CONCLUSIONS: Our results suggested that pdgf-b signaling is involved in cranial NCC migration and it is required for proper formation of craniofacial NCC derivatives. Taken together, these data unveiled a new role for pdgf-b during vertebrate development, contributing to complete the picture of pdgf signaling role in craniofacial development.


Asunto(s)
Huesos Faciales/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-sis/fisiología , Cráneo/crecimiento & desarrollo , Animales , Cadherinas/metabolismo , Adhesión Celular , Movimiento Celular , Embrión no Mamífero , Huesos Faciales/embriología , Ratones , Cresta Neural/citología , Transducción de Señal , Cráneo/embriología , Xenopus laevis/embriología , Xenopus laevis/crecimiento & desarrollo
13.
Int J Mol Sci ; 20(10)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096646

RESUMEN

The zebrafish (Danio rerio) is a small vertebrate ideally suited to the modeling of human diseases. Large numbers of genetic alterations have now been modeled and could be used to study organ development by means of a genetic approach. To date, limited attention has been paid to the possible use of the zebrafish toolbox in studying human mitochondrial disorders affecting the nervous system. Here, we review the pertinent scientific literature discussing the use of zebrafish in modeling gene mutations involved in mitochondria-related neurological human diseases. A critical analysis of the literature suggests that the zebrafish not only lends itself to exploration of the pathological consequences of mitochondrial energy output on the nervous system but could also serve as an attractive platform for future drugs in an as yet untreatable category of human disorders.


Asunto(s)
Modelos Animales de Enfermedad , Mitocondrias/fisiología , Sistema Nervioso/patología , Pez Cebra/genética , Animales , Bases de Datos Factuales , Humanos , Canales Iónicos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Enfermedades Mitocondriales , Mutación , Enfermedades del Sistema Nervioso
14.
Front Neurosci ; 13: 1311, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920481

RESUMEN

Hereditary spastic paraplegia (HSP) and hereditary ataxia (HA) are two groups of disorders characterized, respectively, by progressive dysfunction or degeneration of the pyramidal tracts (HSP) and of the Purkinje cells and spinocerebellar tracts (HA). Although HSP and HA are generally shown to have distinct clinical-genetic profiles, in several cases the clinical presentation, the causative genes, and the cellular pathways and mechanisms involved overlap between the two forms. Genetic analyses in humans in combination with in vitro and in vivo studies using model systems have greatly expanded our knowledge of spinocerebellar degenerative disorders. In this review, we focus on the zebrafish (Danio rerio), a vertebrate model widely used in biomedical research since its overall nervous system organization is similar to that of humans. A critical analysis of the literature suggests that zebrafish could serve as a powerful experimental tool for molecular and genetic dissection of both HA and HSP. The zebrafish, found to be very useful for demonstrating the causal relationship between defect and mutation, also offers a useful platform to exploit for the development of therapies.

15.
Sci Rep ; 8(1): 11836, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087422

RESUMEN

Global population aging is one of the major social and economic challenges of contemporary society. During aging the progressive decline in physiological functions has serious consequences for all organs including brain. The age-related incidence of neurodegenerative diseases coincides with the sharp decline of the amount and functionality of adult neural stem cells. Recently, we identified a short list of brain age-regulated genes by means of next-generation sequencing. Among them znf367 codes for a transcription factor that represents a central node in gene co-regulation networks during aging, but whose function in the central nervous system (CNS), is completely unknown. As proof of concept, we analysed the role of znf367 during Xenopus laevis neurogenesis. By means of a gene loss of function approach limited to the CNS, we suggested that znf367 might act as a key controller of the neuroblast cell cycle, particularly in the progression of mitosis and spindle checkpoint. A candidate gene approach based on a weighted-gene co-expression network analysis, revealed fancd2 and ska3 as possible targets of znf367. The age-related decline of znf367 correlated well with its role during embryonic neurogenesis, opening new lines of investigation also in adult neurogenesis to improved maintenance and even repair of neuronal function.


Asunto(s)
Proliferación Celular/genética , Factores de Transcripción de Tipo Kruppel/genética , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Factores de Edad , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Células-Madre Neurales/citología , Homología de Secuencia de Aminoácido , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...